A New Triterpenoid from Doellingeria scaber

Su Ping BAI¹, Li DONG², Zhi An HE², Li YANG¹*

¹National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 ²Department of Chemistry, Xinxiang Medical College, Xinxiang, Henan Province 453000

Abstract: A new oleanane-type triterpene was isolated from the roots of *Doellingeria scaber*. Its structure was identified as $3-0x0-16\alpha$ -hydroxy-olean-12-en-28-oic acid based on 1D and 2D NMR spectroscopy and X-ray analysis.

Keywords: *Doellingeria scaber*, Compositae, oleanane-type triterpenoid, 3-oxo-16α-hydroxyolean-12-en-28-oic acid.

Doellingeria scaber Thunb. (Compositae), a traditional Chinese herb, is widely distributed in China. Its root has been used for treatment of traumatic injury and snake bite¹. As a part of our ongoing program on finding biologically active components from Chinese herbs² we found a new oleanane-type triterpene, 3-oxo-16 α -hydroxy-olean-12-en-28-oic acid **1**, from the roots of *D. scaber*. We report herein the structural elucidation of this new compound by spectroscopic means including 1D and 2D NMR experiments. The structure of **1** was finally confirmed by X-ray single crystal analysis³ (**Figure 1**).

Key HMBC correlations of $1 (H \rightarrow C)$.

X-ray structure (ORTEP drawing) of 1.

* E-mail : yangl@lzu.edu.cn

Su Ping BAI et al.

position	δ_{C}	$\delta_{\rm H}$	HMBC
1	38.4	1.79 (m, H-1α) , 1.39 (m, H-1β)	Η-2α, Η-2β, Η-9α, Η-25
2	33.6	2.49 (ddd, 16, 10.4, 7.1, H-2β)	Η-1β
		2.32 (ddd, 16, 7.1, 3.7, H-2α)	
3	216.2		H-1β, H-2α, H-2β, H-23, H-24
4	46.5		H-5α, H-23, H-24
5	54.3	1.30 (m, H-5α)	Η-1β, Η-6β, Η-9α, Η-23, Η-24, Η-25
6	19.2	1.42 (m, 2H-6)	Η-5α
7	32.0	1.48 (m, 2H-7)	Η-6β, Η-9α, Η-26
8	38.9		H-9a, H ₂ -11, H-26, H-27
9	45.2	1.66 (m, H-9α)	H ₂ -11, H-12, H-25, H-26
10	36.2		Η-6β, Η-9α, Η-25
11	22.9	1.85 (m, 2H-11)	Η-9α, Η-12
12	121.1	5.21 (t, 3.4, H-12)	H ₂ -11, H-18β
13	143.9		H ₂ -11, H-18β, H-27
14	41.1		Н-12, Н-16β, Н-18β, Н-26, Н-27
15	34.9	1.68 (dd, 12.5, 3.3, H-15α) 1.27 (dd, 12.5, 3.3, H-15β)	H-27
16	72.6	4.32 (t, 3.3, H-16β)	Η-15α, Η-15β, Η-18β, Η-22α
17	47.3		Η-16β, Η-18β, Η-22α, Η-22β
18	40.2	2.88 (dd, 14.3, 4.2, H-18β)	Η-12, Η-16β, Η-19α, Η-22β
19	46.3	2.21 (t, 13.5, H-19α) 1.02 (dd, 13.5, 4.8, H-19β)	Н-18β, Н-21β, Н-29, Н-30
20	30.4		Η-19α, Η-21β, Η-29, Η-30
21	35.1	1.90 (m, H-21α), 1.07 (m, H-21β)	H-29, H-30
22	31.3	1.80 (m, H-22β), 1.58 (m, H-22α)	Η-21α
23	26.3	0.99 (s)	H-5α, H-24
24	21.0	0.94 (s)	H-5α, H-23
25	14.8	0.96 (s)	Η-5α, Η-9α
26	16.6	0.73 (s)	Η-9α
27	26.3	1.32 (s)	
28	178.1		Η-18β, Η-22α
29	32.8	0.82 (s)	Η-19α, Η-21α, Η-30
30	24.1	0.89 (s)	Η-19α, Η-21α, Η-21β, Η-29

Table 1 1 H (400 MHz) and 13 C (100 MHz) NMR data of 1 (DMSO-d₆, TMS, δ ppm, J_{Hz})

Compound **1** was obtained as colorless crystals, mp 257-259 °C, $[\alpha]_{D}^{20}$ +57.8 (*c* 0.76, DMSO). The EI-MS spectrum gave the molecular ion peak at m/z (%) 470 (45) and principal fragment ion peaks at 452 (76), 264 (33), 219 (25), 205 (37) and 201 (100), respectively. The ¹³C and DEPT NMR spectra of **1** exhibited 30 carbon signals (7×CH₃, 9×CH₂, 5×CH and 9×C). The molecular formula of **1** was deduced to be C₃₀H₄₆O₄ by HR-ESI-MS that gave the molecular ion peak at 488.3739 (calcd. for C₃₀H₄₆O₄ + NH₄ 488.3734). The IR spectrum showed the presence of hydroxyl (3524 cm⁻¹), carbonyl (1719 cm⁻¹) and double bond (1678 cm⁻¹) functionalities. The ¹H NMR spectrum

showed the presence of seven tertiary methyl groups at δ 0.73, 0.82, 0.89, 0.94, 0.96, 0.99 and 1.32 (each 3H, s), respectively. The ¹³C NMR spectrum showed the presence of one carboxyl group (& 178.1), two olefinic carbons (& 121.1 and 143.9) and one carbonyl group (δ 216.2). These facts suggested that compound **1** was an oleanolic acid-type triterpenoid with a carbonyl group. Comparison of the ¹³C NMR data of 1 with those of 3-oxo-olean-12-en-28-oic acid⁴ suggested that the carbonyl group was located at C-3 position on A-ring, which was supported by the fragment ion peak at m/z205 in the EI-MS spectrum resulting from the retro-Diels-Alder cleavage of the C-ring, and also confirmed by the correlations of C-3 with H-1, H-2 α , H-2 β , H-23 and H-24 in the HMBC spectrum (Figure 1a). Comparison of the ¹H and ¹³C NMR data of 1 with those of scaberoside A₁ methyl ester⁵ suggested that the hydroxyl group was connected at C-16 (δ 72.6), which was supported by the fragment ion peak at m/z 264 in the EI-MS spectrum resulting from the retro-Diels-Alder cleavage of the C-ring, and confirmed by the HMBC correlations of C-16 with H-15a, H-15β, H-18β and H-22a, and of H-16 with C-14, C-17, C-18. The signal at δ 4.32 (t, 1H, J=3.3 Hz) in ¹H NMR spectrum suggested that H-16 was equatorial (β -oriented), which was supported by the presence of NOE effects between H-16 with H-15 α , H-15 β and the absence of NOE effects between H-16 with H-27 in the NOESY spectrum. Therefore, compound 1 was assigned as 3- ∞ -16 α -hydroxy-olean-12-en-28-oic acid. The ¹H and ¹³C NMR assignments together with the HMBC correlations are listed in **Table 1**. The structure of **1** was confirmed by X-ray single crystal analysis as shown in **Figure 1b**. The 16-epimer of **1** has been reported previously⁶, but the ¹H NMR spectrum (100 MHz) was not well resolved and the ¹³C NMR data seem questionable.

Acknowledgments

We thank the National Natural Science Foundation of China for financial support (No. 20172025).

References and Note

- 1. Jiangsu New Medical College, *Encyclopedia on Chinese Herbs*, Shanghai Science and Technology Press, Shanghai, **1986**, p. 641.
- (a) J. Q. Dai, Y. P. Shi, L. Yang, Y. Li, *Chin. Chem. Lett.*, 2002, 13, 143.
 (b) J. Q. Dai, Z. L. Liu, L. Yang, *Phytochemistry*, 2002, 59, 537.
 (c) J. Dai, Q. X. Zhu, C. Y. Zhao, L. Yang, Y. Li, *Phytochemistry*, 2001, 58, 1305.
 (d) J. Dai, C. Zhao, Q. Zhang, Z. L. Liu, R. Zheng, L. Yang, *Phytochemistry*, 2001, 58, 1107.
 (e) H. Wang, L. Yang, X. Tian, Y. Z. Chen, *Pharmazie*, 2001, 56, 889.
 (f) J. Q. Dai, C. Zhao, Y. Wang, Q. Zhang, Z. L. Liu, R. L. Zheng, L. Yang, *J. Chem. Res.* (S), 2001, 74.
 (g) J. Q. Dai, B. Zhou, Y. L. Wang, L. Yang, Z. L. Liu, *Chin. Chem. Lett.*, 2001, 12, 151.
- 3. Crystallographic parameters have been deposited in the editorial office of Chin. Chem. Lett..
- 4. S. Seo, Y. Tomita, K. Tori, Tetrahedron Letters, 1975, 16, 7.
- 5. T. Nagao, R. Tanaka, H. Shimokawa, H. Okabe, Chem. Pharm. Bull., 1991, 39, 1719.
- 6. C. H. Brieskorn, G. Blosczyk, Z. Lenbensm Unters Forsch, 1981, 172, 201.

Received 19 September, 2003